Organometallic Complexes. VII.* The Structure of the Iron Carbonyl Phenylacetylene Complex, Fe₂(CO)₆(C₆H₅C₂H)₃

By G. S. D. King

European Research Associates, s.a., 95 rue Gatti de Gamond, Brussels 18, Belgium

(Received 1 May 1961)

 $Fe_2(CO)_6(C_6H_5C_2H)_3$ crystallizes with four molecules per unit cell in space group $P2_1/n$ with

 $a = 11.963 \pm 0.003, b = 20.442 \pm 0.005, c = 10.326 \pm 0.003 \text{ Å}; \beta = 93^{\circ} 24' \pm 5'.$

The structure has been determined from visually estimated three-dimensional intensity data obtained using Co $K\alpha$ radiation. The iron positions were found from a sharpened Patterson synthesis. Twenty-six of the light atoms were located by use of a minimum function and the remainder from two successive Fourier syntheses. Least-squares refinement led to a final R value of 15%.

The three phenylacetylene residues and one carbonyl group form a seven-membered carbon chain with phenyl groups at the 1, 3 and 6 positions and the carbonyl group in the 5 position. This chain is σ -bonded from the 1, 4 and 7 positions to one iron atom to form two fused fivemembered rings with an iron and a carbon atom in common. This iron atom is also bonded to three carbonyl groups and is octahedrally coordinated. The second iron atom is linked to the remaining two carbonyl groups, to the three-electron donor system $C_1-C_2-C_3$ and to C_6-C_7 .

Bond lengths are: Fe–Fe, $2 \cdot 501 \pm 0 \cdot 003$ (e.s.d.); Fe–C (carbonyl) $1 \cdot 775 \pm 0 \cdot 012$; Fe–C(σ) $2 \cdot 006$, $2 \cdot 097$, $2 \cdot 088$; Fe–C (three-centre) $1 \cdot 96 - 2 \cdot 23$ Å. All other bond lengths are normal.

Introduction

The reaction between iron dodecacarbonyl and phenylacetylene (Hübel & Braye, 1959) gives a number of organometallic compounds of which $Fe_2(CO)_6(C_6H_5C_2H)_3$ is of particular interest. Although very stable at ordinary temperatures, it decomposes at its melting point to give 1,3,5-triphenylbenzene. In boiling benzene it is converted to two isomers of triphenyltropone iron tricarbonyl, $Fe(CO)_4(C_6H_5C_2H)_3$. Recent work (Braye & Hübel, unpublished) has shown that it is also possible to obtain triphenyltropone from $Fe_2(CO)_6(C_6H_5C_2H)_3$ by treatment with triphenylphosphine. In view of these interesting reactions it seemed worth while to determine the structure of this complex.

Experimental

Crystals of the complex were obtained from a petroleum-ether/benzene solution as described by Hübel & Braye. They are thin black monoclinic plates lying on (010) and bounded by general forms.

Cell dimensions were determined by Farquhar & Lipson's (1946) method from oscillation photographs taken with Co $K\alpha$ radiation

$$(\lambda \alpha_1 = 1.78890, \lambda \alpha_2 = 1.79279 \text{ Å})$$

and are

$$a = 11.963 \pm 0.003, b = 20.442 \pm 0.005, c = 10.326 \pm 0.003$$
 Å, $\beta = 93^{\circ} 24' \pm 5'.$

Systematic absences (hol for h+l odd and 0k0 for

k odd) were determined from Weissenberg photographs about the b and c axes. The space group is thus $P2_1/n$. This orientation was chosen to make the a and c axes as nearly orthogonal as possible. The observed density is 1.54 ± 0.02 g.cm.⁻³ and that calculated for Z=4 is 1.544 g.cm.⁻³.

Multiple-film equi-inclination Weissenberg photographs were taken about the $a (h=0 \rightarrow 4), b (k=0)$ and 1) and $c \ (l=0 \rightarrow 6)$ axes using crystals 0.18×0.13 $\times 0.10$ mm., $0.11 \times 0.08 \times 0.08$ mm., and 0.12×0.09 $\times 0.07$ mm., respectively, the shortest dimension being in the b direction. In this way 3415 of the 3685 reflections accessible to $Co K \alpha$ radiation were recorded. Of these 2631 were strong enough to be observed. Intensities were estimated by visual comparison with a set of standard spots prepared from the same crystal. No attempt was made to correct for absorption or for variation in spot shape due to the irregular shapes of the crystals. Allowance was made for the extension and compression of spots on the upper-level Weissenberg photographs following Phillips (1954). Corrections for Lorentz and polarization factors were made by direct computation. Wilson's (1942) method was used to place the intensities on an absolute scale. This method also gave a mean temperature factor of 3.0 Å².

Determination of the structure

While three-dimensional intensity data were being collected, attempts were made to interpret the c- and a-axis projections. Sharpened Patterson functions were calculated for both these projections. In the

^{*} Part VI. Krüerke, U., Hoogzand, C., & Hübel, W. (1961). Chem. Ber. 94, 2817.

c-axis Patterson projection several more or less consistent sets of possible iron-iron vectors were found. All but one were eliminated by the use of a Buerger (1951) minimum function. A c-axis electron-density projection was calculated using signs from the ironatom contributions alone but could not be interpreted in terms of any conceivable structure. It was impossible unambiguously to determine the z coordinates of the iron atoms from the a-axis Patterson projection, probably because these coordinates do not differ greatly and are both close to 0.75.

The three-dimensional intensity data were sharpened and then modified by the factor

$(\sin \theta/\lambda)^4 \exp \{-25.64 \ (\sin \theta/\lambda)^2\}$

(Shoemaker et al., 1953) which has a maximum at $\sin \theta = 0.5$ and a very small value at $\sin \theta = 1$. From these modified data a three-dimensional Patterson function was calculated using the *M*-card method* (V. Schomaker, unpublished). The positions of the iron atoms were easily found from the Patterson function. The vectors between one iron atom and the three atoms related to it by the cell symmetry were used as the basic translations in the computation of a minimum function of rank 4. From the minimum function twenty-six light atoms were located in chemically reasonable positions. A retrospective examination showed clearly three more atoms in positions that were a priori unreasonable.

These twenty-eight atoms were used to calculate structure factors on an IBM 650 computer. The scattering factors used were taken from Berghuis et al. (1955) for C and O, from Freeman & Wood (1959) for Fe and, in the last stages of the work, from McWeeny (1951) for H. The values for Fe were reduced by a dispersion correction of 3.89 electron units calculated from the table given by James (1950). The discrepancy factor R was 0.41. A three-dimensional Fourier synthesis showed eight more atoms and a further structure-factor calculation (R=0.38) and Fourier synthesis indicated the positions of the two remaining atoms. A third calculation of structure factors (R=0.28) and Fourier synthesis confirmed these positions. The structure was refined by six applications of the method of least squares using the programme NYXR2 which is a development of NYXR1 (Friedlander, Love & Sayre, 1955) for the IBM 704 computer. The F_0 were weighted simply according to the multiplicity with the exception that the non-observed data for which F_o was taken as $(\frac{1}{2}F_{\min}^2)^{\frac{1}{2}}$ were given 20% of this weight. Refinement of an isotropic temperature factor for each atom was introduced in the third cycle. The progress of the refinement is shown in Table 1 where

$$\begin{aligned} R = \mathcal{\Sigma}(K|F_o| - |F_c|) / \mathcal{\Sigma}K|F_o| \\ \text{and} \quad R' = \mathcal{\Sigma}w(K|F_o| - |F_c|)^2. \end{aligned}$$

* The master cards were kindly supplied by Dr V. Schomaker.

Table 1. Progress of the least-squares refinement

		R'	R'
	R	lst weighting	2nd weighting
Parameters from 3rd			weighting
Fourier synthesis	0.29		
lst least-squares cycle	0.232	120516	
2nd cycle	0.193	86053	
3rd cycle, temperature			
factor refinement intro-			
duced	0.189	81815	
4th cycle	0.178	72472	
5th cycle	0.172	67961	
6th cycle	0.169	66271	
6th cycle, non-observed			
reflections omitted	0.121	64669	313650
7th cycle, hydrogen			
atoms included	0.145		299420
8th cycle	0.149		267106
9th cycle	0.152		261728

A three-dimensional difference synthesis was calculated using the structure factors calculated during the sixth refinement cycle for reflections of $\sin \theta/\lambda \leq 0.3$ Å⁻¹. There were more or less well-defined positive regions of height ca. 0.4 e.Å⁻³ in the difference synthesis corresponding to the fifteen phenyl hydrogen atoms. In view of the broadness of some of these peaks these hydrogen atoms were placed on the diagonals of the benzene rings so that C-H=1.05 Å.

The three remaining hydrogen atoms showed up as relatively sharp peaks from which their positions could be determined. There were about five other peaks of similar size which could not be accounted for by hydrogen atoms and in some cases might be due to anisotropic thermal vibration of phenyl carbon atoms. There were also negative regions $(-0.7 \text{ e.} \text{Å}^{-3})$ centred on the iron atoms; these are discussed below.

The refinement was completed by three more leastsquares cycles in which hydrogen contributions were included and the non-observed reflections were omitted. The weighting system was changed to w =500 p/F^2 (where p is the multiplicity) with a minimum value of 1 and a maximum of 25. This change caused R to increase slightly (Table 1) owing to the change in scale factor. The effect of the hydrogen contributions to the structure factors is negligible and the improvement in R' during the last three refinement cycles was due mainly to the change in the weighting system. Examination of the values of observed and calculated structure factors from the ninth cycle showed that in most cases where $|F_o| - |F_c|$ was large this quantity was negative, suggesting a systematic error in scale or temperature factors. This was borne out by the negative regions round the iron atoms in the difference Fourier synthesis. It has recently been pointed out (Geller & Durand, 1960) that the programme NYXR2 has a theoretical fault in that it applies the scale factor correction to the observed data which should be kept constant in any leastsquares treatment. They too found that this programme gave low values of the temperature factor.

G.S.D. KING

Table 2. Comparison of observed and calculated structure factors

N signifies a negative value

Table 2 (cont.)

K 111111122 0000000001111111112 0000000011111111	F 5222149822 K 5215287712880911117774 K 1614610155541840866 K 53175039126113969 K F 522211111 122161116114471313 11 8421535 22112226 K 5317503912613969 K	F 511111111 0 122124 02002554174020022574 9 2012207551122 0 12212111111 0 12212012554174020022574 0 201220740255447022 0 201125929105577102 0 2011220 0 2011116 141312 11 0 2011220 0 2011122 0 2011120 0 2011120 0 0 0	K 9910111234 0 4 035 0 09111 0 4 035 0 099111 0 4 035 0 099111 0 4 035 0 011 0 0 0 0 0 0 0	F 0 F 0 1 18 15 15 1 <td1< td=""> 1 1 1</td1<>	K F 07 1 10 9 113 2 113 1 113 1 113 1 113 1 113 1 113 1 113 1 113 1 113 1 111 1 111 1 111 1 111 1 111 1 111 1 112 1 113 1 114 1 115 2 010 3 011 1 011 1 011 1 011 1 011 1 011 1 011 1 011 1 011 1 011 1 011	F C N N N N N N N N N N N N N N N N N N	K F 03 20 04 33 05 35 06 32 07 28 099 22 111 15 18 1 06 34 000 32 000 32 000 32 000 32 000 32 000 32 000 32 000 32 000 32 000 32 000 32 000 32 000 32 000 32 000 32 112 32 113 12 114 12 000 28 000 28 000 28 000 28 000 28 000 28	F C 8 33687 N N N N N N N N N N N N N N N N N N N	K 00110044 00110044 0011004 0011004 00110111111 0011004 001101111111 0011004 001101111111 0011004 005 005 005 005 005 005 005	о к 28499954724466 к 59079498277400 к 02028646485843 к 29057688 к 2 к 95 Г 52223554724466 к 59079498277400 к 02028202212111 х 222257688 к 2 к 95 Г 7	F _c 0 5 23 81 14 12 99 92 N 0 4 14 7 2 2 9 92 N 0 4 14 7 2 2 9 92 N 0 4 14 7 2 2 9 92 N 0 5 4 5 8 0 0 2 2 8 0 8 5 6 1 0 1 2 1 2 7 2 0 8 7 5 8 0 0 2 8 8 6 8 5 6 1 0 1 2 1 2 7 2 0 8 7 5 8 0 0 2 8 8 6 8 5 6 1 0 1 2 1 2 7 2 0 8 7 5 8 0 0 2 8 8 6 8 5 6 1 0 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	K 09 11 12 14 15 16 0 00 00 00 00 00 00 00 00 00	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	k k N 15 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 0 0	F 0 1 1 0 1 0	F c 1 6 0 3 32627 1 6 0 8 NN 1 77 1 229N N N N N N N N N N N N N N N N N N	K 100 01 02 03 05 06 07 111 01 03 04 05 06 07 111 010 111 02 03 04 05 06 07 08 010 11 02 03 04 05 06 07 08 09 011 11 00 03 05 06 07 08 09 010 11 02 03 05 06 07 08 0	о калалана и калалана калалан	F. 0 6 2 6 1 3 N 1 7 8 N 7 N 0 0 1 8 N 1 2 7 N 0 1 1 8 N 1 2 7 N 0 1 1 4 N 1 2 7 N 1 2 1 4 N 1 5 N 1 4 N 1 2 1 4 N 1 5 N 1 4 N 1 5 N 1 4 N 1 5 N
0012345678901134567	534206578758139725 11121312 5125	62N 3347 177274 20NN 32NN 132NN 147 10 320 4 7	01 23 02 88 04 24 06 88 09 4 10 22 13 33 14 22 13 14 15 11 16 2 18 11 19 11 20 1	25 16 88 40 82 85 83 45 83 45 83 45 83 45 83 45 83 45 80 19 86 30 85 15 80 19 80 19 80 15 15 15 15 15 15 15 15 15 15 15 15 15 1	06 K 01 61 02 14 03 98 04 29 05 15 06 29 07 232 09 18 10 8 11 31 12 16 13 42 14 32 15 25 19 16	01 73N 109 21 33 221 8N 37N 15N 37N 45 316 13N	07 K 02 70 03 15 05 45 06 28 07 16 08 17 09 18 10 13 11 13 12 56 13 26 13 26 16 17 07 K 007 K 007 55	00 76N 10N 58 117N 17N 10N 68N 15 01 96N	08 00 01 02 03 04 05 06 07 08 09 10 11 12 13 08	K 1564 1872 130 10 128 14 K	0 0 6 N 6 8 N 4 6 N 17 2 4 9 13 0 N 13 2 N 1 5 1 4 N 0 1	09 03 04 05 06 07 08 07 09 11 12 13 14 16 09	K 00 19 17NN 50 57 13 122 21 21 21 21 20 29 14 37N 15 39 10 K 01	000 009 10 11 10 00 001 02 006 002 006 009 122 13	28 28 23 31 4 0 8 29 29 24 160 329 24 160 315 29 17	02 28N 20N 28N 23 24 14N 26 7 31N 15	12 04 12 05 05 05 06 07 08 09 12	21 19 K 33 19 20 13 9 8 K 34	17 00 31N 14 10 21 8N 4 10 7N 11N 01 34
04 01 02 03 04 06 09 12 14 15 16 04 00 01 02 03 04 00 12 01 02 04 05 04	K 163118 8866 13616 1686 1308 108 108 108 1095	07 10 61 9 10N 7N 8N 11 16 26N 08 20 13N 7 16 31N 81N 17N 5N	$\begin{array}{c} 0 \\ 5 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	K 03 5 13 6 21 5 13 8 13 8 13 8 13 8 13 8 13 8 13 8 13 8 13 8 13 8 13 8 13 9 13 10 26 10 26 10 26 10 26 10 26 10 26 10 26 10 26 10 26 10 26 10 26 11 26 12 26 13 26 13 26	06 K 01 26 02 26 03 37 04 27 05 29 04 27 05 29 04 34 09 12 11 320 04 27 14 15 19 16 06 K 01 52	0 2 2 9 N 3 2 2 N 3 2 2 N 3 2 2 N 3 6 1 9 2 7 N 5 6 N 1 2 N 3 5 N 1 0	01 55244 02 446 01 446 2138 11 7 11 7 11 0 7 K 21 0 2 2 49 0 05 2 238 0 7 K 200 0 05 2 230 0 05 2 30 0	6 2 2 7 7 2 2 5 7 7 1 7 2 5 7 5 7 1 7 2 5 7 5 7 1 7 2 5 7 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	01 02 03 04 05 07 08 10 112 14 15 17 08 00 102 04 02 04 05 06 07	613395086369159 K 34114618	74N 11 227 22 8N 50N 29N 13N 21 8N 21 8N 02 00 27 13N 217N 28N 16	00 01 01 02 04 05 10 04 07 10 04 07 10 07 10 09 01 11 13 11 09 01 11 05 10 05 10 06 11 06 11 10 06 11 10 06 11 10 07 11 10 06 11 10 07 11 10 06 11 10 07 10 10 10 10 10 10 10 10 10 10	21 2 4 N 12 6 N 12 6 N 12 1 0 N 12 1 1 2 13 1 1 1 2 13 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10 01 03 06 07 08 10 12 10 00 01 02 06 01 02 06 11 10 01 02 05 07 07 07 07 07 07 07 07 07 07) к 32800 914 227 1 к 3227 321 11 0 к 3227 321	03 29 15 13 10 28 10 28 10 26 10 26 10 26 10 7 7 15 7 10 5 7 10 29 10 20 20 20 20 20 20 20 20 20 20 20 20 20	03 05 07 08 12 00 02 03 04 05 04 05 07 12 04 05 04 05 04 05 04 05 05 04 05 05 05 07 08 07 07 08 07 07 08 07 07 08 07 07 08 07 07 07 07 07 07 07 07 07 07	19 206 11 11 18 15 29 16 17 18 11 4	13N 17 9N 10N 02 12 9 20N 21N 21N 03 13N 9N 14

 $\mathbf{246}$

Table 2 (cont.)

к	F.	Fc	K F _o F _c	K F _o F _c	K F _o F _c	K F _o F _c	K F _o F _c	K F _o F _c	K F _o F _c
023 004 005 007 009 113 15 167 19	365267 11775 11775 11775 11252	3630698N 1630698N 11589N 1558 1558 1558 1558	06N K 05 01 23 22 02 25 24 03 24 20 04 38 35 05 37 40 06 32 32 08 31 25 10 15 12 10 15 12 10 15 12 11 12 14 26 19 16 17 14	07N K 03 00 27 22N 01 37 02 16 12N 03 25 19N 04 42 44 05 12 12N 06 35 37 07 46 47 08 35 37 07 46 47 11 207 205N 12 207 205N 12 207 205N 14 36 32 16 19 11N 17 12 13N	08N K 01 01 19 12 02 22 23 04 38 42 05 20 18N 07 23 25 07 23 25 07 33 42N 09 16 16 10 33 42N 15 12 49N 17 13 10	14 16 11N 08N K 06 00 39 32 01 28 19 03 16 11N 04 33 27N 04 33 27N 04 32 14 15 16 14 13 11 8 14 17 20N	03 47 40 04 39 34 04 39 34 05 25 71 06 28 25 07 29 78 09 22 19 10 12 7 12 14 11 13 22 24 14 7 6 09 8 05 00 23 15 01 39 29 02 27 16	05 21 14 06 33 29 10N K 04 00 45 46N 01 36 32N 02 12 7 04 39 36 10 11 8N 11 17 14 10N K 05 01 18 14	03 16 13 06 17 16 08 11 16 09 8 10N 11N K 06 01 9 10 02 18 10 02 18 10 02 18 10 04 21 10 06 12 10N
06	N K	0 2	17 9 6		08N K 02	08N K 08	03 31 20 04 19 9N	02 46 38 03 16 11N	02 27 28
00 01 02 03 04 05 07	20 52 11 60 20 44 12	22N 62N 69N 18N 47 2	06N K 06 00 12 6N 02 8 10 03 19 14N 05 29 26N 06 35 36N	07N K 04 01 22 23N 02 16 13 04 30 27 05 20 17 06 23 18N 07 26 25	00 28 27N 01 18 10 02 17 13 03 40 45N 04 16 13N 05 13 5 06 41 44N 07 26 21	00 7 12N 01 17 11N 09N K 01 00 13 4N	05 34 24N 06 17 11N 07 25 17N 08 24 19 11 17 12 12 17 13N 13 16 12	U4 22 12N 06 28 25N U8 8 6N 10 19 14N 10N K 06	03 18 15 04 21 16N 06 11 6N 08 7 6N 09 10 6
08 09 11 12 13 14 16 17	37 317 234 232 23 23	4 4 3 3 1 3 N 1 8 N 3 0 N 1 1 1 5 1 9	07 37 37 08 24 20 09 10 6N 11 19 17N 12 22 11N 13 9 1 15 7 8 16 10 14N	08 28 19N 09 36 34N 10 32 28 11 14 11 13 23 17 15 19 17N 17 9 8	UB 39 28 09 30 23N 11 40 41N 12 27 23N 16 8 4N	01 8 2 02 29 32 03 23 23 23 04 20 24N 05 17 14 06 15 12N 07 37 42N 04 22 81	09N K 06 01 49 43 02 16 12N 03 47 41N 11 18 14	00 32 31 01 12 2N 02 20 12N 04 16 12N 10 10 13	UO 25 16 U4 21 18N U5 12 9N U6 15 14 U8 9 4
19	19	2 2 N		07N K 05	01 25 22N	09 21 19N 10 13 8	09N K 07	00 10 5N	12N K 03
06	N K	03	06 N K 10	00 22 18N 02 22 14	03 24 15N 04 31 27N 05 52 56	11 22 18 12 13 9N	00 19 31N	05 22 20N 06 21 17N 07 18 10	02 19 13N 05 16 3
01 02 03	18 17 35	13N 12N 36	078 4 01	03 24 17 04 26 24N	06 34 36 07 16 11N	09N K 02	10N K 01	08 8 3 10 5 7N	12N K 04
04	1145	12N 43	00 56 62	05 19 15N 06 47 35N 07 42 41N	10 34 27N 11 27 17N	03 27 26 04 27 27N	UI 22 23N 03 31 36	11 17 18	00 10 11N 01 9 5
06 07 08	15 11 42	7 7 41	01 24 17N 02 17 12N 04 32 34N	08 36 28 10 10 7	13 30 20	05 45 46N 06 19 14 08 12 6	04 28 25 05 27 24N	11N K 02	04 17 20 06 10 6N
10 12 13 14 15 17	52 25 27 27 29 4	49N 25 18 16 20 40N	05 37 39 06 33 26 07 20 21N 09 28 28 10 19 17 11 28 33	13 24 13N 16 11 8N 07N K 06	08N K 04 00 15 11N 01 19 16N 02 20 16N 03 28 27	09 24 19 10 25 34N 11 24 17 12 24 17N 13 14 11N 14 16 12	09 22 16 10 15 13 11 20 18N 12 11 10 13 10 8	03 22 16N 04 23 19N 07 12 2N 09 13 N 10 11 8N	12N K 05 03 10 9N
06	NК	04	12 25 24N 13 17 11N 14 26 25N	01 15 15 04 38 31N	04 31 29 05 24 21 07 42 38N	16 8 5N	10N K 02	11N K 03	13N K 01
00 01 02 03 04 05	14 12 20 52 27	12 10 22N 27 52 28N	15 7 4N 16 13 10 18 17 18 07N K 02	06 25 22 08 25 19 09 30 22 10 27 26N 12 25 13 13 11 7N 14 16 13N	08 24 19N 10 21 18N 11 22 23 12 29 24 14 21 17N	09N K 03 00 39 44 01 32 29N 02 31 26N 03 22 16N 03 22 16N 04 15 13	00 15 14 01 40 35 02 12 8 03 32 32N 04 33 35N 05 15 8N 07 19 12	00 31 22 01 35 31N 02 29 20N 03 24 19N 05 23 15 09 12 10	01 19 10 02 13 14N 03 7 6 13N K 02
07	23	2 6 N 3 6 N	01 34 36N 02 39 48N 04 22 16	07N K 07	08N K 05 01 11 7N	06 30 31 07 25 23 08 25 26N	09 21 14 10 9 8 12 13 12	11N K 04	01 11 9 03 10 15N
09 10 11 12 13	12224	12 9N 21 23 22	06 24 18 08 9 9 09 46 54 11 36 31N 12 45 48N	00 11 17 07N K 09	02 44 39 03 35 21 04 25 11N 05 47 42N 06 21 12N	10 9 3N 11 17 8N 12 22 14 15 16 16	13 21 18 14 10 8N 10N K 03	U1 16 10N U3 18 12 U4 14 8N U7 11 11N	
14 15 16 17	42 27 22 17	4 1 N 2 2 N 2 2 1 4 N	13 22 14N 14 34 30 16 26 18 17 8 9	90 14 20	08 18 10N 09 22 15 10 28 13 12 9 9	09N K 04 U1 21 13N	01 28 20 02 24 9N 03 31 20N	11N K 05 01 21 15	

Table 2 (cont.)

Using the structure factors from the ninth leastsquares cycle, a two-by-two matrix was calculated on the IBM 602A machine for the refinement of scale and overall temperature factors with the F_o fixed. This resulted in a change of 3.5% in the scale factor in the opposite sense (reducing the F_c) to that calculated in the ninth 704 cycle, which reduced the F_o by 1.5% or, with the 'fudge' factor of 0.5 built into the programme, by 0.75%. The increase in the overall temperature factor was 0.09 Å². The effect of these changes on R and $R'/\Sigma w F_o^2$ was very small. Final values of observed and calculated structure factors are given in Table 2 and final atomic parameters together with standard deviations calculated from the leastsquares matrix in Table 3.

An examination of the distribution (which is non-Gaussian) of the eighteen C–C bonds in the phenyl groups suggests a standard deviation of their bond lengths of 0.029 Å compared with a mean value of 0.019 Å calculated from the standard deviations of

atomic positions. The most pessimistic view based on the absolute equality of these eighteen bonds, when the variance would be due entirely to random errors, leads to the hypothesis that all standard deviation values in Tables 3, 4, and 5 should be multiplied by 1.5. While there is no scientific justification for this, as the method of calculating standard deviations by the inversion of the least-squares matrix is the most pessimistic known, it may be pointed out that such an increase would in no way affect the discussion that follows.

Discussion of the structure

The molecule, which is asymmetric, exists in two enantiomorphic forms and the substance crystallizes as the racemate. Bond lengths and bond angles are listed in Tables 4 and 5. Fig. 1 shows the molecule which has two distinct parts. The first is centred on Fe₁, which is octahedrally coordinated to three carbonyl groups and to the three atoms C_1 , C_4 and C_7 of the

Table 3.	Final	atomic	parameters	with	their	standard	deviations	
			I					

			-	D				$\pi(\mathbf{D})$
	x/a	y/b	z/b	Б (Å ²)	(A^2)	$({ m \AA}^2)$	$({ m \AA}^2)$	$({ m \AA}^2)$
Fe.	0.5410	0.3893	0.7315	2.96	0.002	0.002	0.002	0.04
Fe	0.3858	0.3243	0.8202	2.81	0.002	0.002	0.002	0.04
0,	0.6923	0.2314	0.8467	4.17	0.009	0.008	0.008	0.16
0,	0.2594	0.4159	0.9705	6.52	0.013	0.011	0.012	0.24
0.	0.2590	0.2180	0.9307	6.17	0.012	0.011	0.011	0.23
0,	0.4994	0.5236	0.8205	6.44	0.012	0.011	0.011	0.24
0 ⁴	0.5693	0.4118	0.4536	6.29	0.012	0.011	0.011	0.24
Ō,	0.7786	0.3967	0.8070	6.28	0.012	0.011	0.011	0.24
C,	0.3781	0.3728	0.6545	3.28	0.013	0.010	0.011	0.19
C.	0.3647	0.3066	0.6192	3.23	0.012	0.010	0.010	0.19
C.	0.4507	0.2630	0.6662	3.08	0.012	0.010	0.010	0.18
Č,	0.5663	0.2897	0.6942	2.79	0.011	0.010	0.010	0.17
C ₅	0.6069	0.2647	0.8242	2.71	0.011	0.009	0.010	0.17
C,	0.5408	0.2897	0.9292	3.14	0.012	0.010	0.010	0.19
C ₇	0.5221	0.3578	0.9130	3.52	0.013	0.011	0.011	0.20
C _e	0.3083	0.3811	0.9056	$4 \cdot 11$	0.014	0.012	0.013	0.23
C _o	0.3083	0.2608	0.8860	4.38	0.012	0.012	0.013	0.24
C10	0.5150	0.4722	0.7820	4.08	0.014	0.012	0.012	0.23
C11	0.5586	0.4046	0.5627	4 ·10	0.014	0.012	0.013	0.23
C12	0.6848	0.3958	0.7784	4.58	0.012	0.013	0.013	0.26
C13	0.3086	0.4233	0.5852	3.61	0.013	0.011	0.011	0.21
C14	0.2572	0.4754	0.6480	4.91	0.016	0.014	0.014	0.27
C15	0.1872	0.5171	0.5775	5.74	0.018	0.012	0.016	0.31
$C_{16}^{}$	0.1203	0.5088	0.4477	5.77	0.018	0.016	0.016	0.31
C ₁₇	0.2154	0.4582	0.3818	6.08	0.018	0.016	0.016	0.33
C_{18}^{-1}	0.2844	0.4148	0.4513	4 ·14	0.014	0.012	0.012	0.23
C19	0.4305	0.1909	0.6515	2.97	0.012	0.010	0.010	0.18
C_{20}^{10}	0.3221	0.1653	0.6391	$4 \cdot 22$	0.012	0.012	0.012	0.24
C_{21}^{-1}	0.3102	0.0972	0.6120	4.46	0.012	0.013	0.013	0.25
$C_{22}^{}$	0.3997	0.0576	0.6053	4.88	0.016	0.014	0.014	0.26
$C_{23}^{}$	0.5074	0.0830	0.6202	4.54	0.012	0.013	0.013	0.25
$C_{24}^{}$	0.5248	0.1477	0.6445	3.85	0.013	0.012	0.012	0.21
C_{25}^{-1}	0.5323	0.2538	0.0519	3.09	0.015	0.010	0.011	0.19
$C_{26}^{}$	0.5050	0.2867	0.1668	4.26	0.014	0.012	0.013	0.24
C_{27}^{-1}	0.4970	0.2530	0.2793	5.54	0.018	0.014	0.016	0.30
C_{28}^{-}	0.5144	0.1876	0.2892	5.04	0.016	0.014	0.014	0.28
C ₂₉	0.5404	0.1531	0.1768	4.69	0.012	0.013	0.014	0.26
C ₃₀	0.5518	0.1885	0.0600	4.37	0.012	0.012	0.013	0.24

Table 4. Interatomic distances

		Standard	1		Standard
Bond	Length	deviation	Bond	Length	deviation
Fe-Fe	2:501 Å	0.003 Å	CrC	1.373	0.022
$Fe_{1}-C_{1}$	1.806	0.012	$C_{14} = C_{15}$	1.354	0.023
$Fe_{1}-C_{10}$	1.796	0.013	C_{10}	1.367	0.023
$Fe_{-}C_{-}$	1.764	0.016	$C_{16} - C_{17}$	1.382	0.021
$Fe_{1}-C_{1}$	1.756	0.013	C_{17} C_{18}	1.406	0.017
$Fe_2 - C_8$	1.754	0.013	$C_{0}-C_{0}$	1.499	0.014
$Fe_2 - C_2$	2.088	0.013	C_{10}	1.398	0.019
Fe_{-C}	2.097	0.010	$C_{00}^{-19} - C_{01}^{-20}$	1.424	0.018
$Fe_{1}-C_{2}$	2.006	0.011	$C_{01}^{20} - C_{00}^{21}$	1.344	0.021
Fe_{-C}	1.975	0.011	$C_{aa}^{21} - C_{aa}^{22}$	1.389	0.022
Fe_2-C_2	2.108	0.011	$C_{aa}^{22} - C_{aa}^{23}$	1.359	0.018
$Fe_2 - C_2$	$2 \cdot 203$	0.011	$C_{04}^{23} - C_{10}^{24}$	1.438	0.012
Fe ₂ -C ₂	2.227	0.012	$C_{e}^{24} - C_{e5}^{19}$	1.473	0.012
$Fe_{2}-C_{2}$	1.965	0.013	$C_{as}^{o} - C_{as}^{23}$	1.419	0.016
$C_{0} - O_{0}$	1.159	0.017	$C_{92}^{23} - C_{97}^{23}$	1.359	0.020
$\tilde{C}_{a} - \tilde{O}_{a}^{2}$	1.167	0.017	$C_{97}^{20} - C_{99}^{27}$	1.356	0.020
C ₁₀ -O	1.142	0.016	$C_{22}^{27} - C_{22}^{20}$	1.408	0.019
$C_{11} - O_{r}$	1.151	0.017	$C_{20}^{20} - C_{30}^{20}$	1.420	0.019
$C_{19} - O_{c}$	1.144	0.020	$C_{30}^{20}-C_{25}^{00}$	1.357	0.016
$C_{1}^{12} - C_{9}^{10}$	$1 \cdot 407$	0.012	00 10		
$C_{9} - C_{9}$	1.425	0.016	Non-bonded		
$C_{2} - C_{4}$	1.499	0.016	approaches		
$C_4 - C_5$	$1 \cdot 490$	0.014	Fe _e -C.	2.682	0.011
$C_5 - O_1$	1.238	0.014	$Fe_{0}-C_{5}$	2.910	0.011
$C_5 - C_6$	1.471	0.014	$C_1 - C_7$	3.102	0.017
$\tilde{C_6} - \tilde{C_7}$	1.419	0.012	$C_{0}-C_{0}$	3.743	0.016
$C_{1} - C_{13}$	1.483	0.017	$C_2 - C_r$	$2 \cdot 407$	0.016
$C_{13} - C_{14}$	1.408	0.018	-3 -5		

.

Table 5.	Bond	angles
----------	------	--------

	Angle	Standard deviation		Angle	Standard deviation
0 5. 0	05.10	0.4	0 0 0	107.90	0.0
$C_1 - re_1 - C_4$	00.6	0.4	$C_3 - C_4 - C_5$	107.2	0.9
$C_1 - Fe_1 - C_7$	98.0	0.5	$C_4 - C_5 - O_1$	120.4	1.0
C_4 -Fe ₁ - C_7	83.4	0.4	$O_1 - C_5 - C_6$	121.7	1.0
$C_1 - Fe_1 - C_{10}$	95.1	0.5	$C_4 - C_5 - C_6$	112.0	0.9
C_1 -Fe ₁ - C_{11}	79.6	0.9	$C_5 - C_6 - C_7$	109.0	0.9
$C_1 - Fe_1 - C_{12}$	171.8	0.6	$C_6 - C_7 - Fe_1$	113.5	0.8
$C_4 - Fe_1 - C_{10}$	173.3	0.5	$\mathrm{Fe}_2 - \mathrm{C}_1 - \mathrm{C}_2$	75.0	0.7
$C_4 - Fe_1 - C_{11}$	88.0	0.5	$\mathrm{Fe}_{2}-\mathrm{C}_{2}-\mathrm{C}_{1}$	64.8	0.6
C_4 -Fe ₁ - C_{12}	88.5	0.5	$\mathrm{Fe}_2-\mathrm{C}_2-\mathrm{C}_3$	74.3	0.6
$C_{7}-Fe_{1}-C_{10}$	90.0	0.5	$\mathrm{Fe}_2-\mathrm{C}_3-\mathrm{C}_2$	67.1	0.6
$C_{7}-Fe_{1}-C_{11}$	171.4	0.6	$\mathrm{Fe_2-C_6-C_7}$	60.5	0.6
$C_7 - Fe_1 - C_{12}$	86.0	0.6	$\mathrm{Fe}_{2}-\mathrm{C}_{7}-\mathrm{C}_{6}$	80.6	0.7
$C_{10} - Fe_1 - C_{11}$	98.6	0.6	$Fe_1 - C_1 - C_{13}$	123.7	0.8
$C_{10} - Fe_1 - C_{12}$	91.9	0.6	$C_{2}-C_{1}-C_{13}$	119.5	1.0
$C_{11} - Fe_1 - C_{12}$	94.8	0.6	$C_1 - C_{13} - C_{14}$	123.6	1.1
$C_8 - Fe_2 - C_9$	89.3	0.6	$C_1 - C_{13} - C_{18}$	117.8	1.1
$C_1 - Fe_2 - C_8$	96.0	0.5	$C_{13} - C_{14} - C_{15}$	119.6	1.3
C-Fe-C	$124 \cdot 9$	0.5	$C_{11}^{10} - C_{15}^{14} - C_{16}^{10}$	119.9	1.5
CFeC	163.4	0.5	$C_{15}^{14} - C_{16}^{10} - C_{17}^{10}$	$123 \cdot 2$	1.6
CFeC	113.9	0.5	$C_{1e}^{13} - C_{17}^{16} - C_{18}^{17}$	117.9	1.5
C-Fe-C.	88.4	0.6	$C_{17} - C_{19} - C_{19}$	120.9	$1 \cdot 2$
C ₁ -Fe ₀ -C ₀	135.0	0.6	$C_{10} - C_{10} - C_{14}$	118.4	1.1
CFeC	102.7	0.5	$C_{0}-C_{0}-C_{10}$	118.2	0.9
CFeC	94.3	0.5	$C_{4}^{2}-C_{9}^{3}-C_{19}^{19}$	121.3	0.9
C-Fe-C	90.7	0.5	$C_{0}^{4} - C_{10}^{3} - C_{00}^{3}$	121.4	1.0
C-Fe-C	120.8	0.6	$C_{0} - C_{10} - C_{04}$	119.2	1.0
C,-Fe,-C,	104.0	0.5	$C_{10}^{3} - C_{00}^{4} - C_{01}^{4}$	117.6	$1 \cdot 2$
$Fe_1 - C_{10} - O_4$	176.0	$1 \cdot 2$	$C_{aa}^{19} - C_{aa}^{20} - C_{aa}^{21}$	122.0	1.3
$Fe_{1} - C_{11} - O_{5}$	176.8	$1 \cdot 2$	$C_{a1} - C_{a2} - C_{a2}$	120.2	1.3
$Fe_1 - C_{10} - O_6$	176.4	1.3	$C_{aa}^{21} - C_{aa}^{22} - C_{aa}^{23}$	121.0	1.3
Fe -C -O	174.4	$1 \cdot 2$	$C_{aa}^{22} - C_{aa}^{23} - C_{10}^{24}$	119.7	1.1
Fe_–C_–O	180.0	1.2	$C_{04} - C_{10} - C_{00}$	119.4	1.0
Fe,-C,-Fe	76.0	0.4	$C_{r} - C_{o} - C_{or}$	121.9	0.9
Fe ₁ -C ₁ -Fe ₂	78.0	0.4	$C_{\pi} - C_{\sigma} - C_{\sigma}$	124.9	1.0
FeFeC.	54.1	0.3	$C_{-}-C_{-}-C_{-}$	121.0	1.0
Fe-Fe-C	51.7	0.3	$C_{6} - C_{25} - C_{26}$	121.5	1.0
$Fe_{-}Fe_{-}C_{-}$	50.0	0.3	$C_{6} = C_{25} = C_{30}$	120.4	1.2
$Fe_{-}Fe_{-}C_{-}$	50.3	0.3	$C_{25} = C_{26} = C_{27}$	123-1	1.4
$Fe_{-}C_{-}C_{-}$	110-1	0.8	$C_{26} = C_{27} = C_{28}$	118.9	1.4
$C_{-}C_{-}C_{-}C_{-}$	116.4	1.0	$C_{27} - C_{28} - C_{29}$	118.8	1.3
$C_1 C_2 C_3$	118.5	0.9	$C_{28} - C_{29} - C_{30}$	191.0	1.9
$C_2 - C_3 - C_4$	104.3	0.7	$C_{23} - C_{30} - C_{25}$	117.5	1.2
$C_3 - C_4 - C_1$	104.5	0.7	$C_{30} - C_{25} - C_{26}$	111.0	1.1
$-1^{-}_{4}^{-}_{5}$	104 4				

organic system. The second consists of Fe_2 with two carbonyl groups perpendicular to one another. The organic system forms with Fe_1 two five-membered rings having the bond Fe_1-C_4 in common. It is shown in detail in Fig. 2 in which the organic bond lengths are also indicated.

The lengths of the Fe–C and C–O bonds in the iron carbonyl groups are all normal. The bonds Fe_2-C_1 and Fe_2-C_7 are shorter (1.97 Å as against 2.12 Å) than the corresponding bonds in the but-2-yne complex of iron carbonyl hydride, $Fe_2C_{12}O_8H_8$ (Hock & Mills, 1961). A possible explanation is that the bonds Fe_2-C_1 , Fe_2-C_7 , Fe_1-C_1 and Fe_1-C_7 must be either distorted or shortened in order that the iron-iron distance shall be normal. The angle $C_1-Fe_1-C_7$ is substantially greater than the octahedral angle, the π -bonds Fe_2-C_1 and Fe_2-C_7 are shorter than those in $Fe_2C_{12}O_8H_8$ and Fe_1-C_7 is shorter than the other Fe-C σ -bonds. A reduction in the length of Fe_1-C_1 may be prevented by steric interaction between the phenyl group attached to C_1 and the carbonyl group $C_{10}-O_4$. No explanation can be offered for the fact that the ironcarbon σ -bonds are significantly ($4\frac{1}{2}$ standard deviations for Fe₁-C₇ and 9 standard deviations for Fe₁-C₁ and Fe₁-C₄) longer than in Fe₂C₁₂O₈H₈.

C₃-C₄ and C₄-C₅ do not differ substantially from single bonds while C₅-C₆ is slightly shorter. The three bonds C₁-C₂, C₂-C₃ and C₆-C₇ are all much shorter and of the same order as those found in Fe₂C₁₂O₈H₈ and in ferrocene (Dunitz, Orgel & Rich, 1956) where there are π -bonds involving iron. The shortest intermolecular contacts are between phenyl and carbonyl groups and are all more than 3.5 Å.

These results suggest that the two parts of the molecule are linked by a π -bond between C₆-C₇ and Fe₂, by a three-electron donor system from C₁-C₂-C₃ to Fe₂ and by an iron-iron bond. The system C₁-C₂-C₃ resembles the allyl group in allylpalladium chloride (Dehm & Chien, 1960) and the group CHMe-CH-CH₂ in butadiene cobalt hydrocarbonyl (Moore, Jonassen,

Fig. 2. Bond lengths in $Fe_2(CO)_6(C_6H_5C_2H)_3$. Values underlined are distances from Fe_2 .

Joyner & Bertrand, 1960) in which nuclear magnetic resonance measurements have shown the allyl carboncarbon bonds to be equivalent.

The same system exists in cyclopentenylcyclopentadienylnickel(II) (Fischer & Werner, 1961; Jones, Parshall, Pratt & Wilkinson, 1961; Shaw & Sheppard, 1961) where the cyclopentenyl ring corresponds to the ring $C_1-C_2-C_3-C_4-Fe_1$ in the present structure.

The project of which this work is part was supported by the Union Carbide Corporation, New York, N.Y., U.S.A. I am grateful to Drs R. H. Gillette, C. E. Sunderlin and W. Hübel for their stimulating encouragement in this work. I have had many helpful discussions with Dr H. Tompa on mathematical methods and with Mr A. Vosse on the use of IBM machines. Most of the hand calculation and drawing was carried out by Melle Ch. de Meeûs and Mr J. P. Pauwels to whom I am indebted.

My thanks are due to Mr J. Mommens of IBM of Belgium who programmed and carried out the calculations on the 650 computer and to Mr A. Dennery of IBM France for advising on and carrying out the least-squares refinements. It is also a pleasure to record my gratitude to Mme L. Masuy and to Mme E. Provis who carried out all the other IBM calculations.

References

- BERGHUIS, J., HAANAPPEL, IJ. M., POTTERS, M., LOOP-STRA, B. O., MACGILLAVRY, C. H. & VEENENDAAL, A.L. (1955). Acta Cryst. 8, 478.
- BUERGER, M. J. (1951). Acta Cryst. 4, 531.
- DEHM, H. C. & CHIEN, J. C. W. (1960). J. Amer. Chem. Soc. 82, 4429.
- DUNITZ, J. D., ORGEL, L. E. & RICH, A. (1956). Acta Cryst. 9, 373.
- FARQUHAR, M. C. M. & LIPSON, H. (1946). Proc. Phys. Soc. 58, 200.
- FISCHER, E. O. & WERNER, H. (1961). Tetrahedron, Letters No. 1, 17.
- FREEMAN, A. J. & WOOD, J. H. (1959). Acta Cryst. 12, 271.
- FRIEDLANDER, P. H., LOVE, W. & SAYRE, D. (1955). Acta Cryst. 8, 732.
- GELLER, S. & DURAND, J. L. (1960). Acta Cryst. 13, 325.
- HOCK, A. A. & MILLS, O. S. (1961). Acta Cryst. 14, 139.

HÜBEL, W. & BRAYE, E. H. (1959). J. Inorg. Nucl. Chem. 10, 250.

- JAMES, R. W. (1950). The Optical Principles of the Diffraction of X-rays, p. 608. London: Bell.
- JONES, D., PARSHALL, G. W., PRATT, L. & WILKINSON, G. (1961). Tetrahedron, Letters No. 2, 48.
- McWEENY, R. (1951). Acta Cryst. 4, 513.
- MOORE, D. W., JONASSEN, H. B., JOYNER, T. B. & BER-TRAND, A. J. (1960). Chem. and Ind., p. 1304.
- PHILLIPS, D. C. (1954). Acta Cryst. 7, 746.
- SHAW, B. L. & SHEPPARD, N. (1961). Chem. and Ind., p. 517.
- SHOEMAKER, D. P., BARIEAU, R. E., DONOHUE, J. & LU, C. S. (1953). Acta Cryst. 6, 241.
- WILSON, A. J. C. (1942). Nature, Lond. 150, 151.